This PhD project considers the development of planar integrated photonic devices and systems for microwave/RF signal processing in the optical domain, such as a combination of directional couplers, Mach-Zehnder interferometers (MZI) and Bragg gratings, for use in microwave photonic systems. Integrated microelectronic circuits have penetrated every aspect of the field of signal processing, particularly in optical fibre telecommunication systems. Nevertheless, there is increasing exploration of all-optical signal processing due to its unprecedented large bandwidth and fast operating speed. One route uses integrated optical chips to realize photonic devices and systems for microwave/RF signal processing.
The research work is also going to be in collaboration with the academic and industry organizations in the Optics Valley of China in Wuhan, China. The goal of this project is to build monolithic integrated planar devices for use in the ultrawide bandwidth and ultrafast signal processing for microwave photonic systems. It will involve the design and manufacture of integrated planar components and devices using the bespoke fabrication facilities developed within our research group, including flame hydrolysis deposition, direct UV laser writing, and also cleanroom facilities.